Innovating energy solutions: Research and development highlights

R&D has been part of ExxonMobil’s DNA since our company began more than 135 years ago. Our innovations have helped provide the energy fundamental to modern life – from the clean, efficient fuels that power today’s transportation to the natural gas that provides light and heat to homes and businesses.

Today, our world faces a dual challenge: meeting growing demand for energy while also reducing environmental impacts, including the risks of climate change. ExxonMobil is committed to doing our part.

Article July 15, 2019

Innovating energy solutions: Research and development highlights

Our commitment to energy innovation

ExxonMobil scientist

Today, we are working to develop the next generation of energy solutions, including: advanced biofuels; carbon capture and storage; natural gas technologies; and new energy efficiency processes. In addition to our robust in-house capabilities, we collaborate with leading research and technology companies, national labs and universities, and others involved in breakthrough energy research. While all forms of energy are needed – including natural gas and renewables such as wind and solar – new technologies will be required to meet the world’s emissions-reduction goals. 

R&D is in our DNA

ExxonMobil is looking for affordable, scalable solutions that address the three main areas of energy use: transportation, power generation and manufacturing. We are also deploying advanced technologies in these areas where applicable.

Algae and other advanced biofuels

ExxonMobil is actively researching biofuels made from algae. Algae naturally produce lipids that can be turned into a renewable, lower-emission fuel for transportation. The challenge is doing so economically and at scale, moving this technology from the petri dish to the fuel tank. ExxonMobil and Synthetic Genomics Inc. continue to make progress in identifying and enhancing algae strains capable of high lipid production while maintaining desirable growth rates. And because the manufacturing processes for algae biofuels and today’s transportation fuels are similar, algae biofuels could be processed in existing refineries to supplement supplies of conventional gasoline, diesel and other fuels.

Our broad portfolio of advanced biofuels research also includes biofuels derived from cellulosic biomass. We have an agreement with Renewable Energy Group Inc. to study the production of biodiesel by fermenting cellulosic sugars from sources such as agricultural waste.

icon for algae

Advanced, or second-generation, biofuels offer the possibility of achieving significant GHG reductions while also minimizing the impact on land, fresh water and food supplies compared with first-generation biofuels.

icon for algae
An ExxonMobil scientist

Can algae biofuels be the lower-emission fuel of tomorrow?

The biofuels used around the world today are largely derived from agricultural crops; sugar cane and corn are used to make ethanol, while biodiesel is made from vegetable oils like soy. Unlike these first-generation biofuels, algae could provide a renewable fuel source that does not compete with supplies of food or fresh water. Algae also can consume carbon dioxide (CO2) and have the potential to be produced on a large scale.

From production to combustion, here are seven important reasons why we think the answer could be yes. Find out why this renewable energy source, which can be grown at scale on a limited amount of land, is so promising.

Algae consumes CO2

In addition to producing algae, production sites could also act as carbon capture projects.

icon for algae

Lower-emission fuel

On a life cycle basis, algae biofuels emit about half as much GHGs as petroleum-derived fuel.

icon for algae

High yield

Each acre of algae yields more than 2,000 gallons (7,570 liters) of fuel. Compare that to 650 gallons (2,460 liters) per acre for palm oil and 50 gallons (190 liters) per acre for soybean oil.

icon for algae

Year-round harvest

Unlike other feedstocks, such as corn, which is harvested only once a year, algae can be harvested repeatedly throughout the year.

icon for algae

Food production

Algae can be cultivated on land unsuitable for other purposes with water that can’t be used for food production.

icon for algae

Water purifier

Algae can be grown in wastewater and industrial effluent, and can actually purify polluted water while simultaneously producing energy-rich biofuels.

icon for algae

Engine ready

Algae-derived diesel can be pumped into existing diesel automobiles without making major changes to car engines and infrastructure.

icon for algae

Natural gas technology

Natural gas emits up to 60 percent fewer GHGs than coal for power generation, and is an ideal source of reliable power while also supplementing intermittent renewable energy sources such as solar or wind. It also is an abundant and versatile fuel, capable of powering utilities, homes and transportation. Recent advances in production technologies — many developed by ExxonMobil — have unlocked vast new supplies of gas in North America that previously were uneconomic to produce. ExxonMobil is the largest natural gas producer in the U.S.

Increased use of natural gas is a major reason why energy-related CO2 emissions from the U.S. power sector are down 15 percent since 2010, and at levels not seen since the early 1990s.

Icon for natural gas

ExxonMobil also is a leader in liquefied natural gas (LNG) technology that is bringing more of this cleaner-burning fuel to countries that need it.

Icon for natural gas
ExxonMobil engineers

Carbon capture and storage

CO2 can be captured, compressed and injected underground for permanent storage. The Intergovernmental Panel on Climate Change has recognized carbon capture as essential to meeting global emissions-reduction goals. ExxonMobil, along with its academic and private-sector partners, is focused on new ways to capture CO2 from industrial and power generation sources, as well as directly from the atmosphere. Our research portfolio spans a wide range of technologies, including novel materials and processes.

ExxonMobil is a sponsor of the National Carbon Capture Center, a U.S. Department of Energy research facility, and is a founding member of the Global CCS Institute.

Capitol icon

In 2019, ExxonMobil and Global Thermostat signed a joint development agreement to advance breakthrough technology that can capture and concentrate carbon dioxide emissions from industrial sources, including power plants, and the atmosphere.

CO2 icon
An ExxonMobil facility

Fuel cell technology

ExxonMobil is exploring an exciting new possibility: using carbonate fuel cells to more economically capture COemissions from gas-fired power plants. This novel approach would significantly reduce the energy needed to capture CO2, is easier to operate than existing technologies, and can be deployed in a modular fashion in multiple industry settings.

Carbonate fuel cell technology could make carbon capture more affordable for industrial sites and power plants.

Icon for fuel cell

Manufacturing and power generation account for about 70% of global energy-related greenhouse gas emissions.

Icon for fuel cell
An ExxonMobil facility
Fuel cell infographic

Chemicals process breakthrough

ExxonMobil and Georgia Tech have developed a potentially revolutionary “reverse osmosis” technology that could significantly reduce GHGs associated with plastics manufacturing by using a molecular filter — rather than energy and heat — to perform a key step in the plastic-making process. If brought to an industrial scale, this breakthrough could reduce the industry’s global annual CO2 emissions by up to 45 million tonnes.

Demand for auto parts, housing materials, electronics and other products made from plastics and other petrochemicals continues to grow. Rising U.S. natural gas production has boosted supplies of ethane, a natural gas liquid raw material used to make plastics, enabling investment in U.S. chemical manufacturing and exports.

Icon for chemicals

Improving industrial energy efficiency and reducing emissions are part of ExxonMobil’s mission to meet the world’s needs while minimizing environmental impacts.

Icon for chemicals
An ExxonMobil facility

How can we reduce emissions from industry?

The industrial sector, which produces everything from steel to cellphones, accounts for about one-third of global energy-related CO2 emissions. ExxonMobil is researching a range of process- intensification technologies that could significantly reduce emissions associated with manufacturing.

Chemicals process breakthrough

ExxonMobil and Georgia Tech have developed a potentially revolutionary technology that could significantly reduce greenhouse gas emissions associated with plastics manufacturing by using a molecular filter – rather than energy and heat – to perform a key step in the process. It could be 50 times more efficient than today’s separation techniques.

Chemicals process breakthrough infographic

Advanced products

ExxonMobil develops and produces a range of advanced products that reduce GHG emissions and improve sustainability. These include resilient, lightweight automotive plastics that reduce overall vehicle weight and advanced tire technologies that help maintain optimal tire pressure — both of which make vehicles more fuel-efficient.

ExxonMobil also produces lightweight plastic packaging materials for everything from food to electronics. Lighter packaging means less transportation-related energy use and GHGs. Plastic packaging also helps extend the shelf life of fresh food by days or even weeks, improving safety and reducing food waste.

icon for advanced products

Our high-performance lubricants — used not just in cars and trucks, but in more than 40,000 wind turbines worldwide — improve sustainability because they need replacing less frequently, reducing the volume of used oil that needs to be disposed of or recycled.

icon for advanced products
ExxonMobil engineer

Life cycle assessments

A product’s environmental impact extends beyond its manufacturing and use; it also includes the acquisition of raw materials used to make the product, as well as its transport and disposal. In other words, a product’s estimated environmental impact should reflect its entire life cycle. ExxonMobil uses in-house experts and tools to conduct environmental life cycle assessments of emerging products and activities. In doing so, we are able to assess which technologies have the potential to deliver the game-changing results required to transition the energy system to lower-emission solutions.

ExxonMobil also collaborates with researchers at universities to advance the science of life cycle assessments. Additionally, in recent years, we have developed new approaches to quantifying environmental impacts associated with energy systems and published our findings in prestigious peer-reviewed journals.

Icon for life cycle

ExxonMobil continues to develop technologies that reduce carbon emissions. For example, we produce a range of advanced products — such as lightweight plastic packaging materials — that help manufacturers reduce energy use, emissions and waste.

Icon for life cycle
Grocery aisle

University research collaborations

In addition to in-house research, ExxonMobil works with approximately 80 universities globally to explore next-generation energy technologies. We are a member of the MIT Energy Initiative, which supports advanced energy research. We have a collaboration with Princeton University in fields including solar and battery technology, and an agreement with the University of Texas to study carbon storage and other technologies.

ExxonMobil was a founding member of the Global Climate and Energy Project at Stanford University, which seeks to develop game-changing breakthroughs that could lead to lower GHG emissions and a less carbon-intensive global energy system.

Icon for university

Other collaborations range from understanding the impacts of black carbon and aerosols (University of California, Riverside) to the conversion of cellulosic sugars to fuels (University of Wisconsin).

Icon for university
ExxonMobil partners

How is ExxonMobil fueling future energy discoveries?

No single company or entity is capable of developing the breakthroughs needed to meet the world’s energy and environmental challenges. That’s why ExxonMobil casts a wide net in the search for new energy technologies – collaborating with universities, national labs, and other companies and innovators around the world.

An ExxonMobil scientist

Universities and labs

ExxonMobil works with about 80 universities around the world to explore next-generation energy and environmental solutions.

The centerpiece is our investment in five global energy centers: the MIT Energy Initiative; Princeton E-ffiliates Partnership; Stanford Strategic Energy Alliance; The University of Texas Institute; and the Singapore Energy Center led by the Nanyang Technological University and National University of Singapore. ExxonMobil has committed $175 million to fund breakthrough energy research at these centers.

In 2019, ExxonMobil formed a partnership with the U.S. Department of Energy’s National Renewable Energy Laboratory and National Energy Technology Laboratory, to jointly research and develop lower-carbon energy systems and technologies.

This unique collaboration will focus on next-generation biofuels, carbon capture, life cycle assessment and other promising areas.

ExxonMobil research partners
ExxonMobil campus
ExxonMobil scientist

Related content

Tools of the future for today's energy workers

These days, mind-bending new technologies aren’t just revolutionizing Silicon Valley. Inventors are working to get these tools into the hands of technicians at refineries on the Gulf Coast and operators in the Permian Basin.

Research and innovation Energy Factor June 18, 2019

Innovation finds a home in the digital garage

From search engine giants to sophisticated computer manufacturers, some of the biggest names in the tech industry are known for their humble beginnings – a makeshift workspace in a garage. And, some of ExxonMobil’s greatest emerging technologies also start in its “digital garage,” though the workspace there is cutting-edge, rather than makeshift.

Research and innovation Energy Factor Feb. 27, 2019

A quantum leap in supplying tomorrow's energy

Discovering tomorrow’s energy on a global scale relies on pushing fundamental science at the micro-level, and new technologies are constantly improving that search for true understanding.

Research and innovation Energy Factor Jan. 11, 2019

University partnerships

We collaborate with leading universities around the world as part of our commitment to finding meaningful and scalable solutions to meet global energy demand, while also minimizing the environmental impacts of energy use, including the risks of climate change.

Research and innovation Topic

Kelsey McNeely in algae lab

Advanced biofuels

We are working alongside scientists at universities, government laboratories and companies to progress the science needed to deliver advanced biofuels with environmental benefits.

Research and innovation Topic

An ExxonMobil employee using a profilometer

Emerging vehicle and fuel technology

We actively support initiatives to reduce consumer emissions from the use of our products in the transportation sector. These include research efforts with partner universities and other companies to address the fuel and vehicle as a single system to improve efficiency.

Research and innovation Topic