What is carbon capture and storage?
Capture
The idea of capturing CO2 emissions before they hit the atmosphere may seem like a futuristic solution, but the technology exists and continues to mature.
ExxonMobil is a global leader in carbon capture and storage. It was the first company to capture more than 120 million metric tons of CO2 through CCS, which is equivalent to removing the annual emissions of more than 25 million cars.
The company’s scientists and engineers are working with outside collaborators to scale CCS to help capture CO2 from the natural gas used to power heavy industrial sites. Only 4% of the exhaust from natural gas turbines is made up of CO2, meaning it’s incredibly difficult to capture.
CCS is vital because it’s one of the few proven technologies that that can help decarbonize energy-intensive industries and lower emissions to levels required to meet the world’s climate targets in the Paris Agreement. While renewables will also play a role, they are considered intermittent energy sources and may not be able to always keep up with the high energy demand required to manufacture products like concrete or steel.
ExxonMobil is also conducting early-stage research on two additional CCS technologies. One is using a fuel cell to capture emissions before they are released from a natural gas-fired power plant or an industrial facility. The other, known as direct air capture, aims to capture CO2 emissions directly from the atmosphere.
At scale, CCS could help reduce emissions from hard-to-decarbonize industries like manufacturing and power generation. Combined, these two sectors account for approximately two-thirds of the world’s energy-related emissions.
Once captured, the next step is to transport the CO2 underground, and store it safely, securely and permanently.
Storage
Storing CO2 is a complex undertaking that requires some of the same expertise ExxonMobil deploys to produce and supply the world with energy – in particular, the understanding of geologic formations. In the case of CCS, the company’s geologists identify underground sites in which to store the captured CO2 molecules.
CO2 can be safely stored in underground natural, porous rock formations. The United States Department of Energy estimates there is at least 2.4 trillion metric tons of CO2 storage capacity in saline formations and depleted oil and gas reservoirs across the country. That underground capacity is large enough to permanently put away hundreds of years’ worth of CO2.
In the Gulf of Mexico alone, a prolific oil and gas producing region, reservoirs underneath the seabed could hold an estimated 500 billion metric tons of CO2 – the equivalent of 130 years’ worth of U.S. industrial and power generation emissions.
One way to streamline the capture, transportation and storage of industrial CO2 emissions is through multiuser CCS hubs in places like Houston. This type of collaborative effort would capture emissions from ExxonMobil and other participating companies operating in the area. By 2040, the hub could store about 100 million metric tons of CO2 annually in secure geological formations.
The hub could act as a blueprint for other industrial areas across the U.S. and around the world.
Capturing and then safely storing the world’s industrial CO2 emissions is an ambitious endeavor, but it’s critical in helping to address the impact of climate change. ExxonMobil will continue doing its part to advance CCS and other emission-reduction technologies that could put the world on the right path toward a lower-emissions energy future.
Explore more
ExxonMobil secures largest CO2 offshore storage site in the U.S.
- ExxonMobil has secured access to over 271,000-acres in Texas state waters; ideal for CO2 storage
- Agreement will directly benefit the Texas Permanent School Fund
- Latest example of ExxonMobil’s leadership in building a carbon capture industry in the U.S.
3 min read
• Oct. 10, 2024Pasta, beans and vegetable oil: bringing carbon capture and storage to summer camp
- More than 1,300 students in Texas, Louisiana and Mississippi took part in STEM summer camps supported by ExxonMobil.
- Campers learned the science behind carbon capture and storage, a key technology to help reduce emissions.
- We worked with two historically Black colleges and universities (HBCUs) to broaden the program’s reach.
4 min read
• Sept. 10, 2024ExxonMobil signs carbon capture agreement with CF Industries in Mississippi
- We’ll remove up to 500,000 metric tons of CO2 annually from CF Industries’ site in Yazoo City.
- It’s the latest sign of our leadership in CCS, a proven emissions solution.
- Our total CCS customer commitments are now up to 5.5 MTA.
3 min read
• July 25, 2024Breakthrough carbon capture technology ready for field testing
Key takeaways:
- We’re developing a breakthrough emissions-reduction technology.
- Carbonate fuel cells could capture CO2 more efficiently, cost-effectively.
- We’ll demonstrate this technology at our Rotterdam site starting in 2026.
3 min read
• May 22, 2024It slices! It dices! It can combat climate change!
Key takeaways:
- Carbon capture and storage (CCS) is a versatile climate tool.
- CCS enables multiple solutions, including low-carbon hydrogen.
- These solutions could reduce, or even remove, CO2 emissions.
2 min read
• May 16, 2024What could an Indonesian CCS hub look like?
Key takeaways:
- Indonesia is evaluating a major potential carbon capture and storage (CCS) hub.
- The hub could store approximately 3 metric gigatons of CO2.
- Indonesia is working with Singapore to develop a potential CCS value chain in Asia Pacific.
2 min read
• May 13, 2024