What is carbon capture and storage?

To help lower global emissions, we’ll need to decarbonize the world’s most energy-intensive and heaviest-emitting industries. That’s where carbon capture and storage (CCS) comes in.

Capture

The idea of capturing CO2 emissions before they hit the atmosphere may seem like a futuristic solution, but the technology exists and continues to mature.

ExxonMobil is a global leader in carbon capture and storage. It was the first company to capture more than 120 million metric tons of CO2 through CCS, which is equivalent to removing the annual emissions of more than 25 million cars.

The company’s scientists and engineers are working with outside collaborators to scale CCS to help capture CO2 from the natural gas used to power heavy industrial sites. Only 4% of the exhaust from natural gas turbines is made up of CO2, meaning it’s incredibly difficult to capture.

CCS is vital because it’s one of the few proven technologies that that can help decarbonize energy-intensive industries and lower emissions to levels required to meet the world’s climate targets in the Paris Agreement. While renewables will also play a role, they are considered intermittent energy sources and may not be able to always keep up with the high energy demand required to manufacture products like concrete or steel.

ExxonMobil is also conducting early-stage research on two additional CCS technologies. One is using a fuel cell to capture emissions before they are released from a natural gas-fired power plant or an industrial facility. The other, known as direct air capture, aims to capture CO2 emissions directly from the atmosphere.

At scale, CCS could help reduce emissions from hard-to-decarbonize industries like manufacturing and power generation. Combined, these two sectors account for approximately two-thirds of the world’s energy-related emissions.

Once captured, the next step is to transport the CO2 underground, and store it safely, securely and permanently.

Storage

Storing CO2 is a complex undertaking that requires some of the same expertise ExxonMobil deploys to produce and supply the world with energy – in particular, the understanding of geologic formations. In the case of CCS, the company’s geologists identify underground sites in which to store the captured CO2 molecules.

CO2 can be safely stored in underground natural, porous rock formations. The United States Department of Energy estimates there is at least 2.4 trillion metric tons of CO2 storage capacity in saline formations and depleted oil and gas reservoirs across the country. That underground capacity is large enough to permanently put away hundreds of years’ worth of CO2.

In the Gulf of Mexico alone, a prolific oil and gas producing region, reservoirs underneath the seabed could hold an estimated 500 billion metric tons of CO2 – the equivalent of 130 years’ worth of U.S. industrial and power generation emissions.

One way to streamline the capture, transportation and storage of industrial CO2 emissions is through multiuser CCS hubs in places like Houston. This type of collaborative effort would capture emissions from ExxonMobil and other participating companies operating in the area. By 2040, the hub could store about 100 million metric tons of CO2 annually in secure geological formations.

The hub could act as a blueprint for other industrial areas across the U.S. and around the world.

Capturing and then safely storing the world’s industrial CO2 emissions is an ambitious endeavor, but it’s critical in helping to address the impact of climate change. ExxonMobil will continue doing its part to advance CCS and other emission-reduction technologies that could put the world on the right path toward a lower-emissions energy future.

Explore more

It slices! It dices! It can combat climate change!

It slices! It dices! It can combat climate change!

Key takeaways:

  • Carbon capture and storage (CCS) is a versatile climate tool.
  • CCS enables multiple solutions, including low-carbon hydrogen.
  • These solutions could reduce, or even remove, CO2 emissions.
What could an Indonesian CCS hub look like?

What could an Indonesian CCS hub look like?

Key takeaways:

  • Indonesia is evaluating a major potential carbon capture and storage (CCS) hub.
  • The hub could store approximately 3 metric gigatons of CO2
  • Indonesia is working with Singapore to develop a potential CCS value chain in Asia Pacific.
Expert spotlight: Clare Glover - working toward our net-zero ambition

Expert spotlight: Clare Glover - working toward our net-zero ambition

Key takeaways:

  • ExxonMobil leverages the skills of our people to deliver solutions such as CCS, lithium and hydrogen.
  • Expertise in oil and gas exploration is transferable to carbon capture and storage projects.
  • Geoscientist Clare Glover works on identifying locations to safely, securely and permanently store CO2 deep underground.
Weve broken ground on CO2 storage for customers

We’ve broken ground on CO2 storage for customers

In southeast Texas, in a clearing surrounded by farmland, there’s a rig drilling a well for ExxonMobil. Nothing out of the ordinary in an area accustomed to oil and gas operations. But this well is anything but ordinary. And it isn’t for oil or gas operations.
Leading the way to a lower carbon future in Asia Pacific

Leading the way to a lower carbon future in Asia Pacific

As Asia Pacific undergoes an energy transition that will impact billions, it will require a combination of the right technologies, expertise and passion to achieve a lower-carbon future.